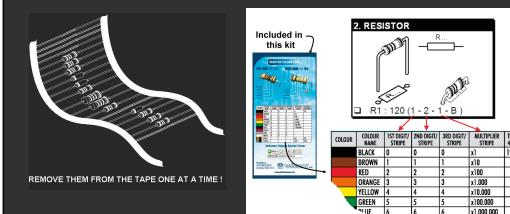


The new Velleman Projects catalogue is now available. Download your copy here: www.vellemanprojects.eu

Micros & Register



Wino Great

Support Forum (EN/FR)

DO NOT BLINDLY FOLLOW THE ORDER OF THE COMPONENTS ONTO THE TAPE. ALWAYS CHECK THEIR VALUE ON THE PARTS LIST!

1. Assembly (Skipping this can lead to troubles!)

Ok, so we have your attention. These hints will help you to make this project successful. Read them carefully.

1.1 Make sure you have the right tools:


- A good quality soldering iron (25-40W) with a small tip.
- · Wipe it often on a wet sponge or cloth, to keep it clean; then apply solder to the tip, to give it a wet look. This is called 'thinning' and will protect the tip, and enables you to make good connections. When solder rolls off the tip, it needs cleaning.
- · Thin raisin-core solder. Do not use any flux or grease.
- · A diagonal cutter to trim excess wires. To avoid injury when cutting excess leads, hold the lead so they cannot fly towards the eyes.
- Needle nose pliers, for bending leads, or to hold components in place.
- Small blade and Phillips screwdrivers. A basic range is fine.
- For some projects, a basic multi-meter is required, or might be handy

1.2 Assembly Hints:

- Make sure the skill level matches your experience, to avoid disappointments.
- Follow the instructions carefully. Read and understand the entire step before you perform each operation.
- · Perform the assembly in the correct order as stated in this manual
- · Position all parts on the PCB (Printed Circuit Board) as shown on the drawings.
- · Values on the circuit diagram are subject to changes, the values in this assembly guide are correct*
- · Use the check-boxes to mark your progress.
- · Please read the included information on safety and customer service

1.3 Soldering Hints:

- 1. Mount the component against the PCB surface and carefully solder the leads
- 2. Make sure the solder joints are cone-shaped and shiny

^{*} Typographical inaccuracies excluded, Always look for possible last minute manual updates, indicated as 'NOTE' on a separate leafle

Features

- measure:
 - » peak power (fig.1)
 - RMS power (fig.2)
 - » mean dB (fig.3)
 - » peak dB (fig.4)
 - » linear audio spectrum (fig.5)
 - » 1/3 octave audio spectrum (fig.6)
- auto or manual range selection
- peak-hold function
- speaker impedance selection
- language selection
- white backlit LCD
- easy panel mounting

Fig.1



Fig.6

Specifications

- power measurement into 2, 4 or 8 ohms + bridged amp option
- range: 300mW to 1200W @ 2 ohms
- sensitivity: -34dBu (15.5 mVrms)
- max, input level: 50Vrms @ 220k
- frequency range: 20Hz to 20kHz
- power supply: 12VDC / 75mA
- dimensions:
 - » display: 128 x 64pixels (46 x 23mm / 1.8 x 0.90")
 - front panel: 98 x 51mm / 3.8 x 2"
 - » mounting depth: 35mm / 1.37"

Fig.3

reversed

CONSTRUCTION

The audio analyzer consist of three parts: the basic module, the display module and the front panel. If required you can mount this kit into a housing, panel, ... In this case use the display gap as a marker reference. First we assemble the basic module.

Basic module

Jumper wire

- .16

Resistors

- 470 (4 - 7 - 1 - B)
- R2 : 1K (1 - 0 - 2 - B)R3 1K (1 - 0 - 2 - B)
- R4 220K (2 - 2 - 4 - B)

- : 33K (3 - 3 - 3 - B)R5 : 33K (3 - 3 - 3 - B): 22K (2 - 2 - 3 - B) R7
- : 750 R8 (7 - 5 - 1 - B)· 180K (1 - 8 - 4 - B)
- R10 : 2K2 (2 - 2 - 2 - B) R11 : 6K8 (6 - 8 - 2 - B)
- R12 6K8 (6 - 8 - 2 - B)
- R13 : 680 (6 - 8 - 1 - B) R14 · 3K3 (3 - 3 - 2 - B)
- R15 . 750 (7 - 5 - 1 - B)R16
- : 5K6 (5 - 6 - 2 - B) R17 220 (2 - 2 - 1 - B)
- : 22K R18 (2 - 2 - 3 - B)

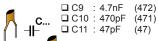
3 Diode

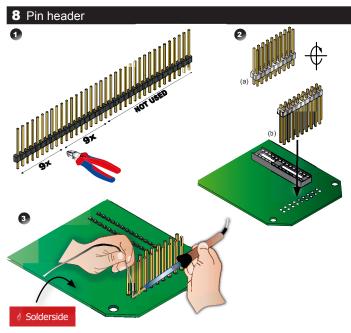
4 IC-socket

Watch the position of the notch!

☐ IC1:8p ☐ IC2: 28p

5 Coil


6 Voltage regulator



☐ VR1 : LM317

7 Ceramic Capacitors

9 Electrolytic Capacitor

Watch the polarity!

- □ C4 : 10µF □ C5 : 10µF
- □ C6 : 220μF □ C7 : 220μF
- □ C8 : 4,7μF □ **C14: 4,7μF**

10 Board-to-wire connector

☐ SK1

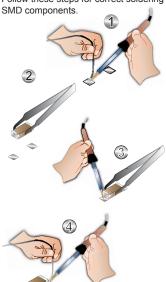
11 Push button

Mount the button on the solderside!

12 IC's

Watch the position of the notch!

☐ IC1 : MCP6002-E/P

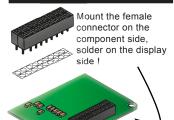


☐ IC1: VKVPA20 (programmed DSPIC33FJ32I/SP)

Display module

Follow these steps for correct soldering

1 Capacitors



- □ C1 : 1µF □ C6 : 1uF □ C2 : 1µF □ C7 : 1µF
- □ C3 : 1µF □ C8 : 1µF □ C9 : 1µF □ C4 : 1µF

□ C10 : 1µF

2 Male header

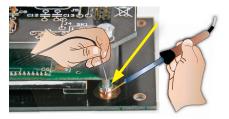
□ C5 : 1µF

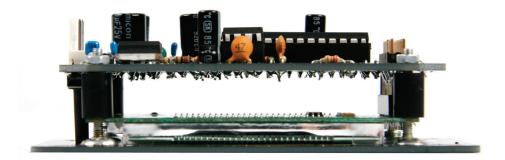
3 LCD

Be careful when soldering the LCD connections. Overheating will damage the LCD screen.

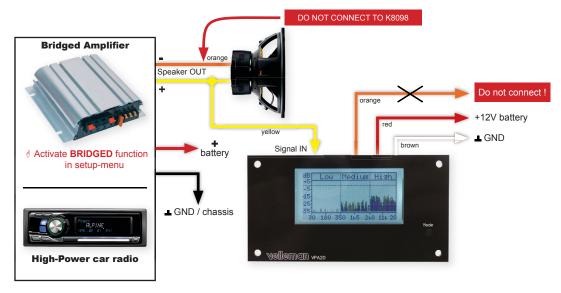
II. ASSEMBLY

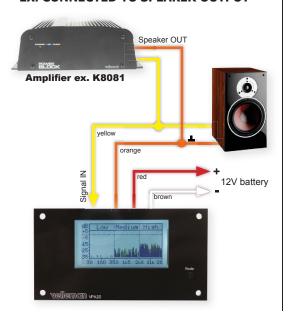
- 1. Roughen the 4 bolts with a knife, a file or some abrasive paper so it will be easier to solder them to the front panel.
- 2. Assemble the unit but do not yet tighten the bolts (fig.1).


3. Position the unit onto the rear of the front panel with the display is centred in the cut-away. Temporarily fix the unit to the rear using non-permanent tape (fig. 2

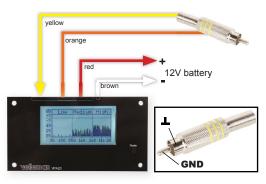


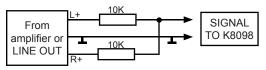
4. Solder 2 diagonal bolts to the front panel. Check if the display is still centred in the cut-away. Solder the remaining 2 bolts (fig. 3).


5. Now, fix the whole unit using the 4 nuts and remove the tape.


III. CONNECTION

EX. "BRIDGED" AMPLIFIER OR HIGH POWER RADIO




EX. CONNECTED TO SPEAKER OUTPUT

EX. CONNECTED TO SPEAKER OUTPUT

HINT FOR STEREO CONNECTION

IV. USE

Short press on the 'mode' button: selecting a meter-display. Long press on the 'mode' button: opening the set-up menu.

SET-UP MENU

Secol:	Mid
Impedance:	8 ohms
Power:	300 M
Sticky Bar:	Mid
Spectrum:	110 dB
Advanced setti	lngs >>

Access to the Set-up menu by a "long" push on the 'mode' button.

Short press: changing settings
 long press: next function

Keep pressed: save changes and exit

Speed: refreshing the screen (Fast - Mid - Slow)

Impedance: "2", "4" or "8" ohms for speaker output power calculation, in case the unit is connected to speaker output.

Power: "AUTO" range or a maximum value that depends on the chosen impedance.

- For impedance = 2: Possible choices are "1200 mW", "12W", "120W" or "1200W"
 For impedance = 4: Possible choices are "600 mW", "6W", "60W" or "600W"
- For impedance = 8: Possible choices are "300 mW", "30W", "30W" or "300W"


Sticky Bar: "Yes" or "No". When selected, small residual sticky bars appear also on the third octave spectrum screen.

Spectrum dB: "dBu" or "110 dB". (110 dB stands for the "Power dB" display which can range from 80dB to 110dB max, depending on the selected Power range).

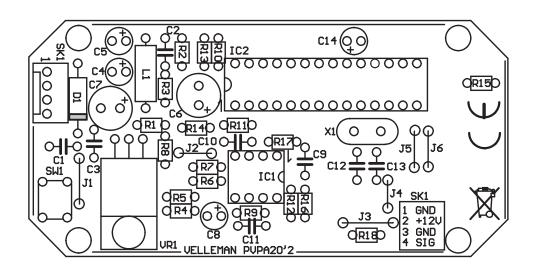
Advanced settings: see pag. 16

ADVANCED SETTINGS

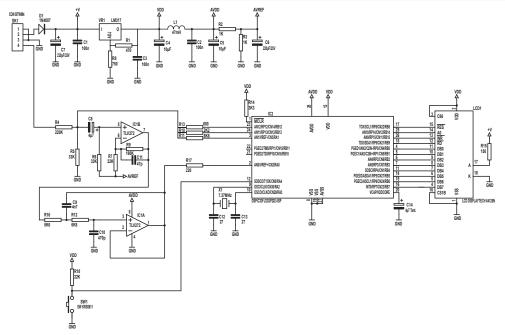
First open the set-up menu with a long press on the 'mode' button and choose the mode "advanced settings".

· Short press: changing settings

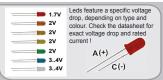
· long press: next function

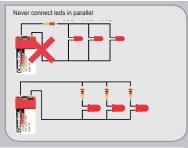

· Keep pressed: save changes and exit

Language: UK / NL / FR / DE / ES


Contrast: choose a contrast between 1 - 20 Reverse video: normal or reverse display

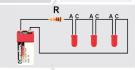
True mean: Yes or no. If 'no' is selected then the display gives the integrated "peak values". If a pure sine wave is used both values will be the same.


Bridge amplifier: Turn on in case of in car use with high power radio or amplifier. **Demo:** showing the different screen layouts, you can choose (slow - fast - off)



Leds and how to use them

How to Calculate the series resistor:


Example: operate a red led (1.7V) on a 9Vdc source.

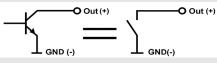
Required led current for full brightness: 5mA (this can be found in the datasheet of the led)

LEDs in series:

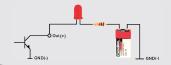
Example: 3 x red led (1.7V) on 9V battery Required led current for full brightness: 5mA (this can be found in the datasheet of the led)

Supply voltage (V) - (number of leds x led voltage (V)) = series resistance (ohms) required current (A)

(9V - 1.7V) x 0.005A = 0.036W


 $\frac{9V - (3 \times 1.7V)}{0.005A} = 780 \text{ or}$

use an 820 ohm resistor


will do the job

open collector outputs

An open collector output can be compared to a switch which switches to ground when operated

Example: How to switch an LED by means of an open collector output

The new Velleman Projects catalogue is now available. Download your copy here: www.vellemanprojects.eu

